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Electro-optical properties of excitons in polydiacetylene chains

M. Dressler1,a, F. Bassani2, and G. Czajkowski2,3,b
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Abstract. We show how to compute the optical functions (reflectivity, transmission, and absorption) of
polydiacetylene chains diluted in their monomer matrix exposed to a uniform electric field in the chain
direction, in the excitonic energy region. Adopting a model electron-hole potential, we derived an analytical
expression for the effective chain susceptibility, which gives the optical functions. The resulting absorption
shows excitonic peaks below the gap and Franz-Keldysh oscillations above the gap. The method has been
applied for a 3BCMU polydiacetylene chain, showing a good agreement with experimental spectra.

PACS. 78.66.-w Optical properties of specific thin films, surfaces, and low-dimensional structures –
71.35.-y Excitons and related phenomena – 71.36.+c Polaritons (including photon-phonon
and photon-magnon interactions)

1 Introduction

The electronic properties of polymers can be modelled
by considering the chain as a strongly correlated one-
dimensional system [1,2]. So in consequence their optical
spectra can be considered as those of excitons in a cylin-
drical quantum wire (QWW). By applying a moderate
electric field along the chain (QWW) axis one observes the
quadratic Stark shift for excitation energies below the gap
and Franz-Keldysh oscillations above the gap [3]. From
the analysis of the electro-absorption spectra microscopic
data as, for example, the positions of excitonic transitions,
their oscillator strengths, and the electron effective masses
along the chain axis, can be obtained. Therefore there is
a need for a simple mathematical procedure which relates
the optical spectra with the microscopic properties.

In what follows we present an approach which is based
on the dynamical matrix theory. In Section 2 we describe
the constitutive equations for an exciton in an homoge-
neous electric field as appropriate to a PDA chain and the
consequent approach to the solution of Maxwell’s equa-
tions. In Section 3 we give the computing procedure for
the calculation of the optical functions. Applications to
the case of 3BCMU and 4BCMU PDA chains are given
for various choices of the relevant parameters in Section 4.
In Section 5 we present conclusions and discuss the exper-
imental consequences.
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2 Density matrix formulation
for polydiacetylene chains in a homogeneous
electric field

Below we concentrate our attention on optical properties
of PDA chains in the excitonic energy region, when a ho-
mogeneous electric field is applied in the chain direction.
As we have recently shown for the case of superlattices
[4], optical properties of a low dimensional system can be
discussed by adapting the Stahl coherent wave approach
when the low dimensional semiconductor is treated as an
effective anisotropic medium in which the quasi-free car-
riers propagate and interact. Below we adopt the Stahl’s
method for the case of PDA treated as a quantum wire
subject to a homogeneous electric field applied in the wire
direction, and show how to calculate the optical functions.

We consider a platelet, parallel to the yz-plane, con-
taining polymer chains parallel to the surface and oriented
in the z-direction. The chains will be considered as QWWs
of radius a with infinite potential barriers. We will discuss
the linear response of the platelet to a normally incident
electromagnetic wave, linearly polarized in the z-direction,

E(R, t) = Ex0 exp(ikR− iωt), k0 =
ω

c
, (1)

and exposed to the electric field F = (0, 0, F ). In the
case of 3BCMU and poly-4BCMU we adopt the model
proposed in [3], assuming excitonic transitions labelled
by the index ν = ν0, νa, νb, νc, νS , ..., with correspond-
ing transition matrix elements Mν . In the density matrix
approach the linear response will be described by a set
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of coupled equations: constitutive equations for the coher-
ent amplitudes Yν(re, rh) (nine for the case of 3BCMU,
six for 4BCMU) from which the polarization can be ob-
tained and used in Maxwell’s equations. The constitutive
equations have the form:

∂tY12ν +
i
~
HehνY12ν =

1
~

[iMν(r)E(R) − ΓνY12ν ] , (2)

where Y12 contains the dependence on spatial coordinates
of the hole and of the electron, r = re − rh is the relative
electron-hole coordinate, and R the center-of-mass coordi-
nate; Mν(r) are the transition dipole densities describing
the coherence between the radiation field and the motion
of the carriers [4,5]. We have considered relaxation times
~/Γ as phenomenological quantities. The operator Hehν

is the exciton effective mass Hamiltonian:

Hehν = Egν −
~2

2mezν
∂2
ze −

~2

2mhzν
∂2
zh

− ~2

2me⊥ν

(
∂2
xe

+ ∂2
ye

)
− ~2

2mh⊥ν

(
∂2
xh

+ ∂2
yh

)
+ eF (zh − ze) + Vehν(re − rh)
+ Veν(xe, ye) + Vhν(xh, yh). (3)

The potential term representing the Coulomb interaction
in an anisotropic medium is

V = − e2

4πε0εb
[
(x2 + y2) + z2ε‖/εz

]1/2 , (4)

where we introduce the two effective dielectric constants,
ε‖, and εz, respectively, and define εb = √ε‖εz.

The coherent amplitudes Yν , with the transition
dipoles give the total polarization of our effective
anisotropic medium:

P(R) = 2
∫

d3r Re

[∑
ν

Mν(r)Yν(r,R)

]
. (5)

The above equation (5), with the constitutive equations
(2), connects the polarization with the electric field. Both
polarization and electric field must obey Maxwell’s equa-
tions, which must be solved to obtain the propagation
modes. One advantage of the procedure here presented
with respect to other approaches is that microscopic the-
ory and macroscopic theory are treated on the same foot-
ing and the problem of additional boundary conditions
finds its natural solution in the conditions which the ge-
ometry of the problem imposes on Y12ν . The above for-
mulation contains all the ingredients for the calculation of
all QWW (PDA) optical functions. Here we will concen-
trate the attention on calculation of the optical absorption
which will be obtained from the susceptibility.

3 Electro-optical functions of polydiacetylene
chains

Similarly to the procedure adopted in a previous paper,
[4] we separate the Hamiltonians of equations (2, 3) into a

“kinetic+electric field” part Hkin+F and a potential term
V , and obtain from (2)

Hkin+FY = ME− V Y, (6)

which coincides with the Lippmann-Schwinger equation,
once the Green function G appropriate to the “ki-
netic+electric field” part is adopted for the coherent am-
plitudes

Y = GME−GV Y. (7)

The solution of equations (6, 7) and the corresponding
Maxwell equations represent a nontrivial computational
problem since we deal with a system of integro-differential
equations in a 6-dimensional configuration space. As it
can be seen from reference [6], even the solution of a
Schrödinger equation for the semiconductor QWW geom-
etry constitutes a problem for which analytical solutions
are not known and only approximative methods can be
used. Since we tend to construct a simple calculational
procedure for interpreting optical data, we assume some
simplifications similar to that of references [7,8], where
a special choice of the electron-hole interaction potential
and of the dipole density was adopted. Since the lateral
extension of a polymer chain is small compared to an ex-
citonic Bohr radius (being of the order of a few nm), we
separate the relative and the center-of-mass motion in the
xy-plane, neglecting then the effects coming from the lat-
eral center-of-mass motion. This means that our effective
mass Hamiltonian will have the form:

Hehν = Egν −
~2

2mezν
∂2
ze
− ~2

2mhzν
∂2
zh

− ~2

2µ⊥ν

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ

)
− ~2

2M⊥ν
∇2
R⊥

+ eF (zh − ze) + Vehν(re − rh), (8)

where ρ =
√

(xe − xh)2 + (ye − yh)2 =
√
x2 + y2. Sim-

ilar as in the case of quantum dots [9,10], we sepa-
rate the center-of-mass motion, which is relevant for the
macroscopic electrodynamical equations, from the relative
electron-hole motion. Due to this assumption, the coher-
ent amplitudes take the form

Yν(re,R) = Yν(re) exp(ikR− iωt). (9)

In the geometry considered (E ‖ b, F ‖ b, E being the
electric field vector of the incident wave and b the direc-
tion of the chain axis) [11,3], only the kz component of k
is relevant and we arrive at the following equations for the
coherent electron–hole amplitude of the ν-exciton:[

Egν − ~ω − iΓν +
~2

2Mzν
k2
z −

~2

2µ‖νz
∂2
z (10)

− ~2

2µ⊥ν
(∂2

x + ∂2
y) + eFz + Vehν(z, ρ)

]
Yν(ρ, z)

= Mν(ρ, z)E0,
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where E0 is the amplitude of the electromagnetic wave
propagating in the medium. Below, for the sake of sim-
plicity, we use the components of the dipole densities with
the coherence radii r0ν along the z-axis and zero along the
planes perpendicular to the chain axis, of the form:

Mν(r) = M0ν
δ(ρ− r0ν)

2πρ
δ(z). (11)

The amplitudes Yν are determined from the Lippmann-
Schwinger equation (7). For further considerations we in-
troduce dimensionless quantities,

ρ =

√
x2 + y2

a?ν
, ζ =

z

a?ν
√
αν
, (12)

fν =
F

FIν
,

k2
ν =

2µ⊥ν
~2

a?2ν

(
Egν − ~ω − iΓν +

~2k2
z

2Mzν

)
,

where FIν is the so-called ionisation field:

FIν =
~2

2µ⊥νea?3ν
=
R?ν
a?νe

, (13)

R?ν is the excitonic Rydberg for the ν-exciton, a?ν is the
corresponding excitonic Bohr radius, and αν = µ⊥ν/µzν
is the anisotropy parameter. With these quantities equa-
tions (10) take the form(
k2
ν − ∂2

ζ − ∂2
ρ −

1
ρ
∂ρ + fν

√
ανζ

)
Yν =

2µ⊥ν
~2

a?2ν Mν(ρ, ζ)E0 +
2√

ρ2 + ανζ2
Yν . (14)

For the sake of simplicity, we start with the following
ansatz for the e-h potential [7,8]:

2√
ρ2 + ανζ2

→ 2δ(ζ)
δ(ρ− ρ0ν)

ρ
, (15)

where the quantities ρν will be fixed by the conditions for
resonances. The Green function of equation (14) can be
expressed in terms of eigenfunctions of the relative motion
[12] and has the form:

Gν(ρ, ρ′; ζ, ζ′) =
1

2(fν
√
αν)1/3

×
∞∑
n=1

2
a2
ν [J1(xn)]2

J0(xn
ρ

aν
)J0(xn

ρ′

aν
)gnν(ζ, ζ′), (16)

where J0, J1 are Bessel functions of 0th and 1st order, xn
are the roots of J0(x),

J0(x(0)
n ) = J0(xn) = 0, n = 1, 2, 3, ..., (17)

and

aν =
a

a?ν
, (18)

gnν(ζ, ζ′) = g<n g
>
n ,

g<nν = Bi

[
(fν
√
αν)1/3

(
ζ< +

k2
ν + (x2

n/a
2
ν)

fν
√
αν

)]

+ i Ai

[
(fν
√
αν)1/3

(
ζ< +

k2
ν + (x2

n/a
2
ν)

fν
√
αν

)]
,

g>nν = Ai

[
(fν
√
αν)1/3

(
ζ> +

k2
ν + (x2

n/a
2
ν)

fν
√
αν

)]
,

and Ai(z), Bi(z) are Airy functions (see, for example, [13]).
The quantity a describes the limits of extension of the rel-
ative lateral motion and is treated at the moment as a free
parameter. As we will see below, such a choice guarantees
the continuity with normal optical properties by taking
the limit f → 0. With the above Green functions and the
dipole densities (11), which in our scaled variables take
the form

Mν(r) =
M0ν

2πρ0νa?3ν
δ(ρ− ρ0ν)δ(ζ), (19)

where ρ0ν = r0/a
?
ν , we calculate the coherent amplitudes

Yν from the Lippmann-Schwinger equations (7) and then
the polarization from equation (5). By the assumption (9)
we obtain the effective chain dielectric function as

ε(ω) =
c2k2

z

ω2
= ε∞ +

∑
ν

χν , (20)

where

χν = 2
M2

0ν2µ⊥ν
ε0
√
ανa?ν~2

g̃ν
1− 4πg̃ν

, (21)

and

g̃ν = Gν(ρ0ν , ρ0ν ; 0, 0). (22)

Having the effective chain susceptibility we can compute
the electro-optical functions. The results for the absorp-
tion coefficient are discussed below.

4 Results for PDA chains

The electroabsorption spectra of isolated 3BCMU and
4BCMU chains diluted in their monomer matrix have been
investigated by Horvath et al. [3]. The advantage of us-
ing isolated chains instead of a fully polymerized sample
is that the optical transitions are narrower for isolated
chains. Consequently the excitons, the vibronic satellites,
and the effect of field broadening can be observed more
easily. We have computed the electro-optical functions for
polydiacetylene chains named 3BCMU and 4BCMU (for-
mula R − C ≡ C − C ≡ C − R, with the side group R
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Table 1. Parameter values for 3BCMU and 4BCMU. Ener-
gies in eV, E

(a)
gν for the excitons ν = 0, a, b, c, d, S (data from

Ref. [3]).

quantity 3BCMU 4BCMU

µ⊥ 0.1m0 0.1m0

µz 0.06m0 0.06m0

E
(a)
gν 2.482 2.378

EgD 2.646 2.541
EgT 2.743 2.630
ES′ 1.933
ES 1.992 1.909
ED 2.079 1.989
ET 2.161 2.075
ν0 1.896 1.810
νa 1.833 1.790
νb 1.813 1.747
νc 1.775
νd 1.756
R?ν 0.22 0.22
a?ν 12Å 12Å
ε∞ 2.5 2.5
M0(eÅ) 12.0 11.3

being (CH2)n − OCO−NH− CH2 − COO− C4H9 with
n = 3 and n = 4, respectively). The parameters used for
calculation are collected in Table 1.

We start with the determination of the potential/and
dipole extension radii ρν . To this end we determine the
Green function (16) in the limit f → 0. Using the same
type of approximation as in [7], we have

Gν(ρ, ρ′; ζ, ζ′) |F=0 =

1
2π

∞∑
n=1

2
a2
ν [J1(xn)]2

J0

(
xn
aν

√
ρ2 + ρ′2

)
gnν(ζ, ζ′), (23)

with

gnν(ζ, ζ′) =
exp(−knν | ζ − ζ′ |)

2knν
, (24)

and

k2
nν = k2

ν +
x2
n

a2
ν

· (25)

The radii ρν will be determined by positions of the poles
in the susceptibility χν , i.e. by the equation

g̃ν =
1

4π
, (26)

where now

g̃ν(F = 0) = Gν(ρ0ν , ρ0ν ; 0, 0) |F=0 . (27)

The expression (23) contains an unknown parameter a
which can be seen as the maximum relative lateral dis-
tance between the electron and the hole. In the case of a
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Fig. 1. The absorption coefficient for a 3BCMU PDA chain,
calculated for two values of Γν , 0.025R?ν (continuous line),
and 0.1R?ν (dotted line). The peaks correspond to excitonic
transitions.

semiconductor QWW a can be interpreted as the QWW
radius, which is strongly related to the excitonic binding
energy. As follows from reference [6], the excitonic bind-
ing energy of 2R? corresponds to a QWW radius of 1.5a?.
This value was used in the calculations. By this dimension
of the QWW the term with n = 1 prevails in the sum (23).
Therefore we calculate the radii ρν from the equation

1
a2
ν [J1(x1)]2

J0

(√
2
x1ρ0ν

aν

)
− 1

4
= 0. (28)

In the above equation we took

Egbν +
x2

1

a2
ν

= Egν , (29)

where the Egbν correspond to a non-confined situation,
and the Egν were treated as known numbers. Having the
radii ρ0ν we insert them into the formula (20) and calcu-
lated its real and imaginary part. In particular, the ab-
sorption coefficient will be given by

α(ω) = 2
ω

c
Im
√
ε. (30)

We have calculated the effective dielectric function for a
3BCMU PDA chain, using the above described method
and taking the dipole moments M0ν from a fit of the ex-
perimental absorption given in reference [3]. The results
for the absorption, in the case F = 0 and for two values
of the damping parameter, are shown in Figure 1. The
absorption spectrum is dominated by a strong exciton ν0,
at 1.896 eV. (Such a strong excitonic resonance is com-
mon to all PDA’s.) Below the gap two excitons of notable
strength, νa (1.833 eV) and νb (1.813 eV), are observed.
Furthermore, the low energy excitons νc (1.775 eV) and νd
(1.756 eV) can be recognized. Above the excitonic transi-
tions the vibronic fine structure with dominant peaks D
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Fig. 2. Variation with field of the excitonic electro-absorption
spectrum for a 3BCMU PDA chain, for two values of the rel-
ative field strength: f = 0.01 (continuous line) and f = 0.03
(dotted line). The damping parameter is Γν = 0.025R?ν .

(2.079 eV) and T (2.161 eV) can be observed. We see that
the damping parameter, Γν , can be used to mimic tem-
perature effects since for higher values of this quantity
the weaker excitons are no longer resolved and disappear.
This effect has also been observed by Horvath et al. [3] who
measured the absorption spectrum of 4BCMU at several
temperatures.

In Figure 2 we display the difference

∆α = α(F ) − α(F = 0), (31)

for two values of the applied electric field. Since the field
strength is small compared to the excitonic ionisation
field, we obtain the red Stark shift for the positions of ex-
citonic transitions and an enhancement of the absorption.
All transitions show the same behaviour and the signal of
each transition increases with the field.

The effects of excitons and of increasing field strength
on the Franz-Keldysh oscillations are shown in Figure 3.
We observe an increase of amplitudes and shift of zeros
positions with the field. The arrows in the figure indicate
the positions of the gaps of the dominant ν0 exciton, Egν ,
and of the D and the T states, EgD and EgT . For energies
between Egν and EgD we have continuum states for the
ν0 exciton and discrete states for the D and the T exciton.
For energies between EgD and EgT we are in the contin-
uum of the ν0 exciton and the D transition but we have
still continuum states for the T transition. In this range
we observe interfering Franz-Keldysh oscillations from the
continuum of the ν0 and the D exciton. A similar discus-
sion holds also for energies above EgT .

For a greater field strength, but below the ionisation
field, the red shift remains, but the real and the imaginary
part of the dielectric function (i.e. the excitonic effects)
are decreasing. This effect is displayed in Figure 4 near
the fundamental excitonic peak (ν0), and in Figure 5 for
both real and imaginary part of the dielectric function.

2.4 2.6 2.8 3.0

-1

0

1

2
Egν EgD EgT

Energy [eV]

∆α
[c

m
-1
]

Fig. 3. The same as Figure 2, in the energetic region of Franz-
Keldysh oscillations. The arrows indicate the positions of the
gaps for the ν0-exciton and the D, T states.
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Fig. 4. The Stark red shift in the absorption for the 3BCMU
ν0 excitonic transition for Γν = 0.025R?ν : f = 0 (continuous
line) and f = 0.5 (dotted line).

Such an effect has been observed recently in semiconduc-
tor quantum dots [14]. The real part of the complex sus-
ceptibility (Fig. 5a) is related to the reflectivity of the
material, whereas its imaginary part (Fig. 5b) is essen-
tially the absorption spectrum. Due to the different gap
energies of the excitons, Egν , EgD, EgT , the red shift of
the resonances differs for a given field strength (see e.g.
Fig. 5b)

5 Conclusions

We have developed a simple mathematical procedure
for calculating the electro-optical functions for a matrix
containing polymer chains, treated as quantum wires,
when the electric field is applied along the chain axis.
We derived an analytical expression for the effective
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Fig. 5. (a) Real and (b) imaginary part of the effective dielectric function of a 3BCMU PDA chain for two values of the applied
field and Γν = 0.025R?ν : f = 0 (continuous line) and f = 0.5 (dotted line).

dielectric function from which the optical functions can
be obtained. The method was applied for polydiacetylene
3BCMU chains and the results agree well with experi-
mental data. This agreement obtained despite the crude
approximations made confirms the existence of Wannier
excitons in PDA chains and their influence on the optical
functions. In the paper we used the intrinsic band param-
eters determined by Horvath et al. [3], but, for cases when
their values (effective masses, oscillator strengths, intrin-
sic damping) are not known the method described can be
used for determining the parameters from optical absorp-
tion data.
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